A Sheep Model for the Osseointegration of PEO-treated Gamma Titanium Aluminide

##plugins.themes.bootstrap3.article.main##

  •   Paola Richiez-Nieves

  •   Irimar Torres-Zapata

  •   Abner Rodriguez

  •   Hector Perez

  •   Zilma Poueymirou

  •   Nanette Diffoot-Carlo

  •   Paul Antony Sundaram

Abstract

A sheep model was used to study the osseointegration of gamma titanium aluminide (γTiAl) screws subjected to plasma electrolytic oxidation (PEO). The degree of osseointegration was determined by measuring the maximum torque for screw removal from bone after 3 and 6 months of implant placement in sheep for PEO-treated γTiAl, untreated γTiAl, and untreated Ti6Al4V cortical screws. The amount of bone growth and mineralization were qualitatively observed by von Kossa staining of the bone tissue in the region surrounding the implants.  Inductive Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) was carried out to determine trace amounts of metallic elements in blood serum samples obtained from the animals. Generally Al, Cr and V were present in blood serum in comparable quantities in the control and implanted animals, while neither Ti nor Nb was detected.  Results from histological analysis and SEM images indicated that de novo bone growth occurred to a greater extent for the PEO treated γTiAl screws. Furthermore, the torque for screw removal from bone was significantly higher (p<0.05) for the PEO-treated γTiAl implants. Taken together, the data supports that the PEO surface treatment enhanced osseointegration to a considerable degree indicating the potential for favorably utilizing PEO-treated γTiAl for dental and orthopedic implant applications.


Keywords: Gamma titanium aluminide, Osseointegration, Plasma Electrolytic Oxidation, Sheep Model

References

Y. Okasaki, S. Rao, Y. Ito. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new titanium alloys. Biomaterials 19 (1998) 1197-1215.

C.N. Elias, J.H.C. Lima, R. Valiev, M.A. Meyers. Biomedical applications of titanium and its alloys. JOM 3 (2008) 46-49.

M. Jatsy. Clinical reviews: particulate debris and failure of total knee replacements. J Appl Biomater 4 (1993) 273-276.

A. Balamurugan, S. Rajeswari, G. Balossier, A.H.S. Rebelo, J.M.F. Ferreiera. Corrosion aspects of metallic implants — An overview. Materials and Corrosion 59 (2008) 855-869.

J. Jacobs, J. Gilbert, R. Urban. Corrosion of metal orthopedic implants. J Bone Jt Surg 80 (1998) 268-282.

P. Sauvé, J. Mountney, T. Khan, J. De Beer, B. Higgins, M. Grover. Metal ion levels after metal-on-metal Ring total hip replacement. J Bone Jt Surg Br 89 (2007) 586-590.

J. Daniel, H. Ziaee, C. Pradhan, D.J. McMinn. Six-year results of a prospective study of metal ion levels in young patients with metal-on-metal hip resurfacings. J Bone Jt Surg Br 91 (2009) 176-179.

J.E. Ellingsen, S.P. Lyngstadaas. Bioimplant interface: Improving biomaterials and tissue reactions, CRC Press 2003 ISBN: 978-0-8493-1474-2.

M. Kulkarni, A. Mazare, P. Schmuki, A. Iglic. Biomaterial Surface Modification Of Titanium and Titanium Alloys for Medical Applications, in Nanomedicine, Eds: A. Seifalian, A. de Mel, D.M. Kalaskar, One Central Press, 2014 pp.111-136.

S.R. Paital, N.B. Dahotre. Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies. Mater Sci Eng 66 (2009) 1-70.

L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, H.E. Kim, S.J. Heo, J.Y. Koak. Improved biological performance of Ti implants due to surface modification by microarc oxidation. Biomaterials 25 (2004) 2867-2875.

Z. Yao, Z Jiang, X. Wu, X. Sun, Z. Wu. Effects of ceramic coating by microplasma oxidation on the corrosion resistance of Ti6Al4V alloy. Surf Coat Tech 200 (2005) 2445-2450.

M. Plecko, C. Sievert, D. Andermatt, R. Frigg, P. Kronen, K. Klein, S. Stübinger, K. Nuss, A. Bürki, S. Ferguson, U. Stoeckle, B. von Rechenberg. Osseointegration and biocompatibility of different implants- a comparative experimental investigation in sheep. BMC Musculoskeletal Disorders 13 (2012) 32-43.

T. Lech, T. Lachowicz. Application of ICP-OES to multielement analysis of biological material in forensic inorganic toxicology. Problems of Forensic Science 78 (2009) 64-78.

J. Versieck. The collection and preparation of human blood plasma or serum for trace element analysis. J Res Natl Bur Stand 91 (1986) 87-92.

L. Balcaen, E. Bolea-Fernandez, M. Resano, F. Vanhaecke. Accurate determination of ultra-trace levels of Ti in blood serum using ICP-MS/MS. Anal Chim Acta 809 (2014) 1-8.

M.I. Yahaya, A. Shehu, F.G. Dabai. Efficiency of extraction of trace metals from blood samples using wet digestion and microwave digestion techniques. J Appl Sci Environ Manage 17 (2013) 365-369.

E. Newman, A.S. Turner, J.D. Ward. The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone 19 (1995) 277S-284S.

A. Nafei, C.C. Danielson, F. Linde, I. Hvid. The properties of growing trabecular ovine bone. Part I: Mechanical and physical properties. J Bone Jt Surg Br 82 (2000) 910-920.

P.-I. Bränemark. Introduction to osseointegration. In P.-I. Bränemark, T.A. Zarb, T. Albrektsson (eds). Tissue-integrated protheses: Osseointegration in Clinical Dentistry. Chicago: Quintessence, 1985: 11-76.

T. Albrektsson, T. Jansson, U. Lekholm. Osseointegrated dental implants. Dent Clin North Am 30 (1986) 151-174.

P. Henry, I. Rosenberg. Single-stage surgery for rehabilitation of the edentulous mandible: Preliminary results. Pract Periodontics Aesthet Dent 6 (1994) 15-22.

D. Buser, H. Weber, N. Lang. Tissue integration of non-submerged implants. 1-year results of a prospective study with hollow cylinder and hollow screw implants. Clin Oral Implants Res 1 (1990) 33-40.

A. Cunha, R.P. Renz, G. Wantowski, R.B. de Oliveira, E. Blando, R. Hubler. A surgical procedure using sheep as an animal model to evaluate osseointegration, Rev Clin Pesq Odontol 3 (2007) 149-157.

A. Probst, H.U. Spiegel. Cellular mechanisms of bone repair. J Invest Surg 10 (1997) 77-86.

V. Sansone, D. Pagani, M. Melato. The effects on bone cells of metal ions released from orthopaedic implants: A review. Clin Cases Miner Bone Metab 10 (2013) 34-40.

B. Daley, A.T. Doherty, B. Fairmann, C.P. Case. Wear debros from hip or knee replacements causes chromosomal damage in human cells in tissue culture. J Bone Jt Surg Br 86 (2004) 598-606.

R.F. Coleman, J. Herrington, J.T. Scales. Concentration of wear products in hair, blood and urine after total hip replacement. Br Med J 1 (1973) 527-529.

R.A. Yokel. The toxicology of aluminium in the brain: a review. Neurotoxicology 21 (2000) 813-828.

E.H. Jeffery, K. Abreo, E. Burgess, J. Cannata, J.L. Greger. Systemic aluminum toxicity: effects on bone, hematopoietic tissue, and kidney. J Toxicol Environ Health 48 (1996) 649-665.

I. Papageorgiou, Z. Yin, D. Ladon, D. Baird, A. C. Lewis, A. Sood, R. Newson, I.D. Learmonth, C.P. Case. Genotoxic effects of particles of cobalt chrome alloy on human cells of different age in vitro. Mutat Res 619 (2007) 45-58.

E.F. Madden, B.A. Fowler. Mechanisms of nephrotoxicity from metal combinations: a review. Drug Chem Toxicol 23 (2000) 1-12.

##plugins.themes.bootstrap3.article.details##

How to Cite
Richiez-Nieves, P., Torres-Zapata, I., Rodriguez, A., Perez, H., Poueymirou, Z., Diffoot-Carlo, N., & Sundaram, P. A. (2020). A Sheep Model for the Osseointegration of PEO-treated Gamma Titanium Aluminide. European Journal of Dental and Oral Health, 1(3). https://doi.org/10.24018/ejdent.2020.1.3.8